Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 175: 106312, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642415

RESUMO

In recent years, there has been a significant advancement in memristor-based neural networks, positioning them as a pivotal processing-in-memory deployment architecture for a wide array of deep learning applications. Within this realm of progress, the emerging parallel analog memristive platforms are prominent for their ability to generate multiple feature maps in a single processing cycle. However, a notable limitation is that they are specifically tailored for neural networks with fixed structures. As an orthogonal direction, recent research reveals that neural architecture should be specialized for tasks and deployment platforms. Building upon this, the neural architecture search (NAS) methods effectively explore promising architectures in a large design space. However, these NAS-based architectures are generally heterogeneous and diversified, making it challenging for deployment on current single-prototype, customized, parallel analog memristive hardware circuits. Therefore, investigating memristive analog deployment that overrides the full search space is a promising and challenging problem. Inspired by this, and beginning with the DARTS search space, we study the memristive hardware design of primitive operations and propose the memristive all-inclusive hypernetwork that covers 2×1025 network architectures. Our computational simulation results on 3 representative architectures (DARTS-V1, DARTS-V2, PDARTS) show that our memristive all-inclusive hypernetwork achieves promising results on the CIFAR10 dataset (89.2% of PDARTS with 8-bit quantization precision), and is compatible with all architectures in the DARTS full-space. The hardware performance simulation indicates that the memristive all-inclusive hypernetwork costs slightly more resource consumption (nearly the same in power, 22%∼25% increase in Latency, 1.5× in Area) relative to the individual deployment, which is reasonable and may reach a tolerable trade-off deployment scheme for industrial scenarios.

2.
Front Microbiol ; 15: 1366744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638907

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is increasingly recognized for its global prevalence and potential progression to more severe liver diseases such as non-alcoholic steatohepatitis (NASH). The gut microbiota plays a pivotal role in the pathogenesis of NAFLD, yet the detailed characteristics and ecological alterations of gut microbial communities during the progression from non-alcoholic fatty liver (NAFL) to NASH remain poorly understood. Methods: In this study, we conducted a comparative analysis of gut microbiota composition in individuals with NAFL and NASH to elucidate differences and characteristics. We utilized 16S rRNA sequencing to compare the intestinal gut microbiota among a healthy control group (65 cases), NAFL group (64 cases), and NASH group (53 cases). Random forest machine learning and database validation methods were employed to analyze the data. Results: Our findings indicate a significant decrease in the diversity of intestinal flora during the progression of NAFLD (p < 0.05). At the phylum level, high abundances of Bacteroidetes and Fusobacteria were observed in both NAFL and NASH patients, whereas Firmicutes were less abundant. At the genus level, a significant decrease in Prevotella expression was seen in the NAFL group (AUC 0.738), whereas an increase in the combination of Megamonas and Fusobacterium was noted in the NASH group (AUC 0.769). Furthermore, KEGG pathway analysis highlighted significant disturbances in various types of glucose metabolism pathways in the NASH group compared to the NAFL group, as well as notably compromised flavonoid and flavonol biosynthesis functions. The study uncovers distinct microbiota characteristics and microecological changes within the gut during the transition from NAFL to NASH, providing insights that could facilitate the discovery of novel biomarkers and therapeutic targets for NAFLD.

3.
Elife ; 122024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38391174

RESUMO

The dynamic interplay between guanine-quadruplex (G4) structures and pathogenicity islands (PAIs) represents a captivating area of research with implications for understanding the molecular mechanisms underlying pathogenicity. This study conducted a comprehensive analysis of a large-scale dataset from reported 89 pathogenic strains of bacteria to investigate the potential interactions between G4 structures and PAIs. G4 structures exhibited an uneven and non-random distribution within the PAIs and were consistently conserved within the same pathogenic strains. Additionally, this investigation identified positive correlations between the number and frequency of G4 structures and the GC content across different genomic features, including the genome, promoters, genes, tRNA, and rRNA regions, indicating a potential relationship between G4 structures and the GC-associated regions of the genome. The observed differences in GC content between PAIs and the core genome further highlight the unique nature of PAIs and underlying factors, such as DNA topology. High-confidence G4 structures within regulatory regions of Escherichia coli were identified, modulating the efficiency or specificity of DNA integration events within PAIs. Collectively, these findings pave the way for future research to unravel the intricate molecular mechanisms and functional implications of G4-PAI interactions, thereby advancing our understanding of bacterial pathogenicity and the role of G4 structures in pathogenic diseases.


Assuntos
Quadruplex G , Ilhas Genômicas , Ilhas Genômicas/genética , Bactérias/genética , DNA , Virulência/genética , Escherichia coli/genética , Genoma Bacteriano
4.
Prep Biochem Biotechnol ; : 1-12, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334942

RESUMO

This study aims to establish a method for purifying total flavonoids in roses using macroporous resin columns, intending to leverage and harness their potential. We screened six macroporous resins to evaluate their capacity for their adsorption and desorption, ultimately identifying X5 macroporous resin as the most effective. To comprehensively understand the adsorption behavior, we analyzed it using various models, such as pseudo-first-order and pseudo-second-order kinetic models, particle diffusion models, and Langmuir, Freundlich, and Temkin isotherm models. Employing both single-factor and uniform design, approaches, the focus of this work was on maximizing the total flavonoid recovery rate. A 3-factor and 10-level uniform design table was utilized for optimizing the optimal process parameters and exploring the antioxidant properties of the purified flavonoids. The optimal process conditions for purifying total flavonoids from roses can be summarized as follows: a sample concentration of 2 mg/mL, pH at 2, 55 mL sample volume, eluent ethanol concentration of 75%, eluent volume of 5 BV, and the elution rate set at 1 mL/min. Following purification, the total flavonoid content peaked at 57.82%, achieving an 84.93% recovery rate, signifying substantial antioxidant potential. Consequently, the method established for purifying TFR using X5 macroporous resin in this study proves to be a dependable and reliable method consistent approach.

5.
Food Chem X ; 21: 101137, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304048

RESUMO

To explore the association between the optimal coagulant for tofu and the components of soybeans,30 different kinds of soybeans were selected, and tested for their optimal coagulant MgCl2 content. The optimal amount of coagulant was taken as the dependent variable, and the soybean Composition were taken as independent variables for the correlation analysis. The results showed that there was a positive correlation between the optimal coagulant content and the content of histidine, 7S ß-conglycinin, B1aB1bB2B3B4 of 11 s glycincin, and α'-subunit of 7S ß-conglycinin, negative correlation with lysine. The regression formula is y = -1.186 + 3.457*B1aB1bB2B3B4 + 2.304*7S + 0.351*histidine - 0.084*lysine + 4.696*α', and the model is validated to be within 10 % of the error value and has a high degree of confidence. This study provides theoretical support for realizing the green production of traditional soybean products.

6.
Int J Biol Macromol ; 254(Pt 3): 128061, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37963499

RESUMO

Aflatoxin B1 (AFB1) is a typical mycotoxin that signifacntly endangers public health and economy. In this study, we systematically studied the interaction of aptamers with AFB1 using circular dichroism, molecular dynamics, molecular docking, and fluorescence analysis. The truncated sequence aptamers were screened using molecular docking. We successfully obtained the AFB1 aptamer with higher affinity and its truncated form was enhanced by 5.2-fold compared to the initial AFB1 aptamer. In addition, for rapid detection of AFB1, we designed a fluorescent nano-adaptor sensing platform using RecJf exonuclease signal amplification strategy based on the optimal aptamer. The aptasensor showed satisfactory sensitivity towards AFB1 with a linear detection range of 1-400 ng/mL and a detection limit of 0.57 ng/mL. The aptasensor was successfully applied to the determination of AFB1 in soybean oil and corn oil with recoveries of 91.02 %-106.59 % and 87.39 %-110.61 %, respectively. The successful application of the AFB1 aptasensor, developed through bioinformatics truncation of the aptamer, provides a novel approach to creating a cost-effective, eco-friendly, and rapid aptamer sensing platform.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aflatoxina B1/análise , Simulação de Acoplamento Molecular , Limite de Detecção , Corantes Fluorescentes
7.
Ticks Tick Borne Dis ; 15(1): 102256, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734164

RESUMO

Amblyomma americanum, also known as the lone star tick, is a small arachnid that feeds on blood and can spread disease to humans and other animals. Despite the overlapped ecological niche, geographic distribution, and host selection, there is no proof that A. americanum transmits the pathogen Borrelia burgdorferi that causes Lyme disease. Studies have shown that phospholipase A2 (PLA2) may act as a tool to eliminate B. burgdorferi, but particular PLA2 genes in A. americanum have not been identified and functionally characterized. Using the de novo sequencing method, we identified 42 putative A. americanum PLA2 (pAaPLA2) homologs in the present study, of which three pAaPLA2 had calcium binding sites and canonical histidine catalytic sites. Then, we determined phylogenetic relationships, sequence alignments, and conserved protein motifs of these pAaPLA2s. Protein structural analysis demonstrated that pAaPLA2s primarily consisted of α-helices, ß-sheets, and random coils. These genes were predicted to be engaged in the phospholipid metabolic process, arachidonic acid secretion, and PLA2 activity by functional annotation analysis. A transcriptional factor (Bgb) was discovered that interacted with pAaPLA2 proteins that may have unrecognized roles in regulating neuronal development. Based on the RNA-seq data, we surveyed expression profiles of key pAaPLA2-related genes to reveal putative modulatory networks of these genes. RNAi knockdown of pAaPLA2_1, a dominant isoform in A. americanum, led to decreased bacterial inhibition ability, suggesting pAaPLA2 may play an important role in mediating immune responses. Collectively, this study provides essential evidence of the identification, gene structure, phylogeny, and expression analysis of pAaPLA2 genes in A. americanum, and offers a deeper understanding of the putative borreliacidal roles in the lone star tick.


Assuntos
Amblyomma , Ixodidae , Humanos , Animais , Amblyomma/genética , Ixodidae/microbiologia , Interferência de RNA , Filogenia , Fosfolipases A2/genética , Perfilação da Expressão Gênica
8.
Food Chem X ; 20: 100931, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144728

RESUMO

In this study, food-grade protein nanoparticles (Wild-NPs, α-lack-NPs, α'-lack-NPs, and (α + α')-lack-NPs) were organized as emulsion stabilizers via thermal induction. The effects of α and α' subunits in soybean protein isolate (SPI) on Wild nanoparticle Pickering emulsion (Wild-NPPEs), α-lack nanoparticle Pickering emulsion (α-lack-NPPEs), α'-lack nanoparticle Pickering emulsion (α'-lack-NPPEs) and (α + α')-lack nanoparticle Pickering emulsion ((α + α')-lack-NPPEs) were investigated. The Pickering emulsion stabilization mechanism indicated that the α'-lack-NPs particle size, surface hydrophobicity, and contact angle were mostly comparatively large. Therefore, the absence of the α' subunit made the desorption of protein nanoparticles at the oil and water interface require higher energy. Through the hydrophobic interaction between molecules, the structure and properties of the emulsion were improved, showing good stability. The existence of α'-lack-NPPEs leads to the formation of a gel-like network in the emulsion, which increases the viscosity of the emulsion and makes the network structure of the emulsion more uniform and denser.

9.
Front Endocrinol (Lausanne) ; 14: 1256618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693356

RESUMO

Introduction: The lone star tick, Amblyomma americanum, is an important ectoparasite known for transmitting diseases to humans and animals. Ecdysis-related neuropeptides (ERNs) control behaviors crucial for arthropods to shed exoskeletons. However, ERN identification and characterization in A. americanum remain incomplete. Methods: We investigated ERNs in A. americanum, assessing their evolutionary relationships, protein properties, and functions. Phylogeny, sequence alignment, and domain structures of ERNs were analyzed. ERN functionality was explored using enrichment analysis, and developmental and tissue-specific ERN expression profiles were examined using qPCR and RNAi experiments. Results and discussion: The study shows that ERN catalogs (i.e., eclosion hormone, corazonin, and bursicon) are found in most arachnids, and these ERNs in A. americanum have high evolutionary relatedness with other tick species. Protein modeling analysis indicates that ERNs primarily consist of secondary structures and protein stabilizing forces (i.e., hydrophobic clusters, hydrogen bond networks, and salt bridges). Gene functional analysis shows that ENRs are involved in many ecdysis-related functions, including ecdysis-triggering hormone activity, neuropeptide signaling pathway, and corazonin receptor binding. Bursicon proteins have functions in chitin binding and G protein-coupled receptor activity and strong interactions with leucine-rich repeat-containing G-protein coupled receptor 5. ERNs were expressed in higher levels in newly molted adults and synganglia. RNAi-mediated knockdown of burs α and burs ß expression led to a significant decrease in the expression of an antimicrobial peptide, defensin, suggesting they might act in signaling or regulatory pathways that control the expression of immune-related genes. Arthropods are vulnerable immediately after molting because new cuticles are soft and susceptible to injury and pathogen infections. Bursicon homodimers act in prophylactic immunity during this vulnerable period by increasing the synthesis of transcripts encoding antimicrobial peptides to protect them from microbial invasion. Collectively, the expression pattern and characterization of ERNs in this study contribute to a deeper understanding of the physiological processes in A. americanum.


Assuntos
Amblyomma , Artrópodes , Adulto , Animais , Humanos , Muda/genética , Transdução de Sinais , Peptídeos Antimicrobianos
10.
J Agric Food Chem ; 71(36): 13346-13362, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37651598

RESUMO

Insoluble dietary fiber (IDF) was recently revealed to have an antiobesity impact. However, the impact and potential mechanism of high-purity IDF derived from okara (HPSIDF) on obesity caused by a high-fat diet (HFD) remain unclear. Except for dietary supplementation, intermittent fasting (IF) has attracted extensive interest as a new dietary strategy against obesity. Thus, we hypothesize that HPSIDF combined with IF treatment may be more effective in preventing obesity. In this study, HPSIDF combined with IF treatment synergistically alleviated HFD-induced dyslipidemia, impaired glucose homeostasis, systemic inflammation, and fat accumulation. Furthermore, gut microbiota dysbiosis and lowered short-chain fatty acid synthesis were recovered by HPSIDF combined with IF treatment. Meanwhile, metabolomic analysis of feces revealed that HPSIDF combined with IF treatment obviously reversed the alterations of metabolic pathways and differential metabolites induced by HFD, which were linked to the modulations of the gut microbiota. Collectively, our findings indicated that HPSIDF combined with IF treatment has great potential to substantially enhance antiobesity efficacy by modulating the gut microbiota and its metabolites.


Assuntos
Microbioma Gastrointestinal , Jejum Intermitente , Humanos , Jejum , Obesidade/tratamento farmacológico , Fibras na Dieta
11.
Front Cell Infect Microbiol ; 13: 1236785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583446

RESUMO

Ticks are ectoparasites that can transmit various pathogens capable of causing life-threatening illnesses in people and animals, making them a severe public health threat. Understanding how ticks respond to bacterial infection is crucial for deciphering their immune defense mechanisms and identifying potential targets for controlling tick-borne diseases. In this study, an in-depth transcriptome analysis was used to investigate the molecular and immune responses of Amblyomma americanum to infection caused by the microinjection of Escherichia coli. With an abundance of differentially expressed genes discovered at different times, the analysis demonstrated significant changes in gene expression profiles in response to E. coli challenge. Notably, we found alterations in crucial immune markers, including the antimicrobial peptides defensin and microplusin, suggesting they may play an essential role in the innate immune response. Furthermore, KEGG analysis showed that following E. coli exposure, a number of key enzymes, including lysosomal alpha-glucosidase, fibroblast growth factor, legumain, apoptotic protease-activating factor, etc., were altered, impacting the activity of the lysosome, mitogen-activated protein kinase, antigen processing and presentation, bacterial invasion, apoptosis, and the Toll and immune deficiency pathways. In addition to the transcriptome analysis, we constructed protein interaction networks to elucidate the molecular interactions underlying the tick's response to E. coli challenge. Hub genes were identified, and their functional enrichment provided insights into the regulation of cytoskeleton rearrangement, apoptotic processes, and kinase activity that may occur in infected cells. Collectively, the findings shed light on the potential immune responses in A. americanum that control E. coli infection.


Assuntos
Ixodidae , Carrapatos , Animais , Amblyomma , Ixodidae/microbiologia , Escherichia coli/genética , Imunidade Inata
12.
Foods ; 12(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569149

RESUMO

Aflatoxin B1 (AFB1) is one of the most contaminated fungal toxins worldwide and is prone to cause serious economic losses, food insecurity, and health hazards to humans. The rapid, on-site, and economical method for AFB1 detection is need of the day. In this study, an AFB1 aptamer (AFB1-Apt) sensing platform was established for the detection of AFB1. Fluorescent moiety (FAM)-modified aptamers were used for fluorescence response and quenching, based on the adsorption quenching function of single-walled carbon nanohorns (SWCNHs). Basically, in our constructed sensing platform, the AFB1 specifically binds to AFB1-Apt, making a stable complex. This complex with fluorophore resists to be adsorbed by SWCNHs, thus prevent SWCNHs from quenching of fluorscence, resulting in a fluorescence response. This designed sensing strategy was highly selective with a good linear response in the range of 10-100 ng/mL and a low detection limit of 4.1 ng/mL. The practicality of this sensing strategy was verified by using successful spiking experiments on real samples of soybean oil and comparison with the enzyme-linked immunosorbent assay (ELISA) method.

14.
Int J Biol Macromol ; 247: 125840, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37454995

RESUMO

Bursicon is a cystine knot family neuropeptide, composed of two subunits, bursicon (burs) and partner of burs (pburs). The subunits can form heterodimers to regulate cuticle tanning and wing maturation and homodimers to signal different biological functions in innate immunity, midgut stem cell proliferation and energy homeostasis, and reproductive physiology in the model insects Drosophila melanogaster or Tribolium castaneum. Here, we report on the role of the pburs homodimer in signaling innate immunity in T. castaneum larvae. Through transcriptome analysis we identified a set of immune-related genes that respond to pburs RNAi. Treating larvae with recombinant-pburs protein led to up-regulation of antimicrobial peptide (AMP) genes in vivo and in vitro. The upregulation of most AMP genes was dependent on the NF-κB transcription factor Relish. Most importantly, we identified a novel AMP, Tenecin 3-like peptide (Ten3LP), regulated by pburs via NF-κB transcription factor Dorsal-related immunity factor (Dif)/Dorsal2, but not Relish. We conducted Ten3LP RNAi, synthesized recombinant Ten3LP protein for microbial inhibition assays and functionally characterized Ten3LP as an AMP specific for fungi and Gram-positive bacteria. We demonstrate that expression of Ten3LP is activated by pburs via the Toll pathway. These findings identify new molecular targets for development of potential antibiotics for treating microbial infections and perhaps for RNAi based pest management technology.


Assuntos
Proteínas de Drosophila , Neuropeptídeos , Tribolium , Animais , Drosophila melanogaster/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Tribolium/genética , Tribolium/metabolismo , Neuropeptídeos/genética , Peptídeos Antimicrobianos , Imunidade Inata/genética , Proteínas de Ligação a DNA , Fatores de Transcrição/genética , Proteínas de Drosophila/metabolismo
15.
Radiat Oncol ; 18(1): 114, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430276

RESUMO

PURPOSE: Local primary-recurrence of esophageal squamous cell carcinoma (ESCC) after definitive treatment has the potential for increasing overall survival with re-irradiation (Re-RT), especially with advanced technique. This study aimed to evaluate the efficacy and toxicities of Re-RT using intensity-modulated radiotherapy (IMRT)/volumetric modulated arc therapy (VMAT) for local primary-recurrence of ESCC. MATERIALS AND METHODS: A total of 130 ESCC patients with local primary-recurrence from Xijing hospital between 2008 and 2021 were enrolled and 30 patients underwent IMRT/VMAT based salvage Re-RT. Cox regression analysis was used to analyze the prognostic factors for overall survival (OS) and after recurrence survival (ARS). The toxicities of 30 patients receiving Re-RT were also assessed. RESULTS: The median OS and ARS of the 130 recurrent patients were 21 months (1-164 months) and 6 months (1-142 months). The 1-, 2-, and 3-year OS rates were 81.5%, 39.2%, and 23.8%, respectively. Besides, the 1-, 2-, and 3-year ARS rates were 30.0%, 10%, and 6.2%. Multivariate analysis showed that Re-RT ± chemotherapy (p = 0.043) and chemotherapy alone (p < 0.001) and esophageal stents (p = 0.004) were independent prognostic factors for OS. The median OS of 30 patients treated with Re-RT were significantly better than that of 29 patients treated with chemotherapy (34.5 months vs. 22 months, p = 0.030). Among 30 ESCC patients treated with Re-RT, the median OS and ARS were 34.5 months (range 12-163 months) and 6 months (range 1-132 months), respectively. The recurrence-free interval (RFI) (> 12 months) and initial radiation dose (> 60 Gy) were significantly associated with improved OS. Radiation esophagitis (Grade 1-2) occurred in 16 patients and myelosuppression (Grade1-2) occurred in 10 patients. Grade 3 toxicities (radiation esophagitis and myelosuppression) were only 13.3%. There were no grade 4 toxicities. CONCLUSION: Our results demonstrated that IMRT/VMAT-based Re-RT was an effective therapeutic option for ESCC patients with local primary-recurrence compared with chemotherapy alone or without any treatment. Re-RT had improved OS but unfavorable ARS.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Esofagite , Radioterapia de Intensidade Modulada , Reirradiação , Humanos , Carcinoma de Células Escamosas do Esôfago/radioterapia , Neoplasias Esofágicas/radioterapia
16.
Insects ; 14(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37367331

RESUMO

The transforming growth factor-ß (TGF-ß) superfamily in insects regulated various physiological events, including immune response, growth and development, and metamorphosis. This complex network of signaling pathways involves conserved cell-surface receptors and signaling co-receptors that allow for precisely coordinated cellular events. However, the roles of TGF-ß receptors, particularly the type II receptor Punt, in mediating the innate immunity in insects remains unclear. In this study, we used the red flour beetle, Tribolium castaneum, as a model species to investigate the role of TGF-ß type II receptor Punt in mediating antimicrobial peptide (AMP) expression. Developmental and tissue-specific transcript profiles revealed Punt was constitutively expressed throughout development, with the highest transcript level in 1-day female pupae and the lowest transcript level in 18-day larvae. Tissue specific expression profiles showed the highest transcript level of Punt was observed in the Malpighian tubule and ovary in 18-day larvae and 1-day female adults, respectively, suggesting Punt might have distinct functions in larvae and adults. Further results indicated that Punt RNAi in the 18-day larvae led to increased transcript level of AMP genes through transcription factor Relish, leading to inhibition of Escherichia coli proliferation. Knockdown of Punt in larvae also led to splitting of adult elytra and abnormal compound eyes. Furthermore, knockdown of Punt during the female pupal stage resulted in increased transcript levels of AMP genes, as well as abnormal ovary, reduced fecundity, and failure of eggs to hatch. This study deepens our understanding of the biological significance of Punt in insect TGF-ß signaling and lays the groundwork for further research of its role in insect immune response, development, and reproduction.

17.
Foods ; 12(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238899

RESUMO

Numerous investigations have shown that insoluble dietary fiber (IDF) has a potentially positive effect on obesity due to a high-fat diet (HFD). Our previous findings based on proteomic data revealed that high-purity IDF from soybean residue (okara) (HPSIDF) prevented obesity by regulating hepatic fatty acid synthesis and degradation pathways, while its intervention mechanism is uncharted. Consequently, the goal of this work is to find out the potential regulatory mechanisms of HPSIDF on hepatic fatty acid oxidation by determining changes in fatty acid oxidation-related enzymes in mitochondria and peroxisomes, the production of oxidation intermediates and final products, the composition and content of fatty acids, and the expression levels of fatty acid oxidation-related proteins in mice fed with HFD. We found that supplementation with HPSIDF significantly ameliorated body weight gain, fat accumulation, dyslipidemia, and hepatic steatosis caused by HFD. Importantly, HPSIDF intervention promotes medium- and long-chain fatty acid oxidation in hepatic mitochondria by improving the contents of acyl-coenzyme A oxidase 1 (ACOX1), malonyl coenzyme A (Malonyl CoA), acetyl coenzyme A synthase (ACS), acetyl coenzyme A carboxylase (ACC), and carnitine palmitoyl transferase-1 (CPT-1). Moreover, HPSIDF effectively regulated the expression levels of proteins involved with hepatic fatty acid ß-oxidation. Our study indicated that HPSIDF treatment prevents obesity by promoting hepatic mitochondrial fatty acid oxidation.

18.
Artigo em Inglês | MEDLINE | ID: mdl-37030854

RESUMO

With the rapid progress of deep neural network (DNN) applications on memristive platforms, there has been a growing interest in the acceleration and compression of memristive networks. As an emerging model optimization technique for memristive platforms, bit-level sparsity training (with the fixed-point quantization) can significantly reduce the demand for analog-to-digital converters (ADCs) resolution, which is critical for energy and area consumption. However, the bit sparsity and the fixed-point quantization will inevitably lead to a large performance loss. Different from the existing training and optimization techniques, this work attempts to explore more sparsity-tolerant architectures to compensate for performance degradation. We first empirically demonstrate that in a certain search space (e.g., 4-bit quantized DARTS space), network architectures differ in bit-level sparsity tolerance. It is reasonable and necessary to search the architectures for efficient deployment on memristive platforms by the neural architecture search (NAS) technology. We further introduce bit-level sparsity-tolerant NAS (BST-NAS), which encapsulates low-precision quantization and bit-level sparsity training into the differentiable NAS, to explore the optimal bit-level sparsity-tolerant architectures. Experimentally, with the same degree of sparsity and experiment settings, our searched architectures obtain a promising performance, which outperform the normal NAS-based DARTS-series architectures (about 5.8% higher than that of DARTS-V2 and 2.7% higher than that of PC-DARTS) on CIFAR10.

19.
Foods ; 12(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107486

RESUMO

The bioactive components in soybeans have significant physiological functions. However, the intake of soybean trypsin inhibitor (STI) may cause metabolic disorders. To investigate the effect of STI intake on pancreatic injury and its mechanism of action, a five-week animal experiment was conducted, meanwhile, a weekly monitor on the degree of oxidation and antioxidant indexes in the serum and pancreas of the animals was carried out. The results showed that the intake of STI had irreversible damage to the pancreas, according to the analysis of the histological section. Malondialdehyde (MDA) in the pancreatic mitochondria of Group STI increased significantly and reached a maximum (15.7 nmol/mg prot) in the third week. Meanwhile, the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), trypsin (TPS), and somatostatin (SST) were decreased and reached minimum values (10 U/mg prot, 87 U/mg prot, 2.1 U/mg prot, 10 pg/mg prot) compared with the Group Control. The RT-PCR results of the expression of SOD, GSH-Px, TPS, and SST genes were consistent with the above. This study demonstrates that STI causes oxidative structural damage and pancreatic dysfunction by inducing oxidative stress in the pancreas, which could increase with time.

20.
Food Chem ; 421: 136181, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37116441

RESUMO

The alkali method was used to prepare soybean protein isolate (SPI) and procyanidin B2 (PCB2) complexes, and the interaction between SPI and PCB2 was studied using multi-spectroscopic methods. The human hepatoma (HepG2) cell hyperlipidemia model was used to explore whether SPI-PCB2 has the potential for synergistic hypolipidemia. According to the findings, PCB2 was primarily linked to SPI via C-S and C-N bonds, and the addition of PCB2 reduced the α-helix structure content of SPI by 4.1%. At the cellular level, the optimal SPI-PCB2 ratio for lowering blood lipids was 1:1. Compared with the model group, the TG content and TC content in the 1:1 group were reduced by 28.7% and 26.3%, respectively. Western blot analysis revealed that SPI-PCB2 = 1:1 exerted synergistic hypolipidemic activity mainly by activating adenosine monophosphate-activated protein kinase α (AMPKα) phosphorylation, inhibiting 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) and fatty acid synthetase (FAS) protein expression, and upregulating carnitine palmitoyl transferase 1A (CPT1A) protein activity.


Assuntos
Biflavonoides , Catequina , Proantocianidinas , Humanos , Proteínas de Soja , Biflavonoides/farmacologia , Catequina/farmacologia , Proantocianidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...